The effect of 6-oxo-prostaglandin E_1 on human platelet aggregation in whole blood in-vitro

P. S. WILSONCROFT, F. J. LOFTS, R. J. GRIFFITHS, P. K. MOORE*, Department of Pharmacology, Chelsea College, Manresa Road, London SW3 6LX, UK

The effect of PGI₂, 6-oxo-PGE₁ and PGE₁ on ADPinduced human platelet aggregation has been assessed in whole blood and in blood centrifuged to prepare plateletrich plasma (PRP). PGI₂ was the most potent antiaggregatory agent in both media. The concentration of PGI₂ required to produce 50% inhibition of platelet aggregation was approximately 0-3 ng ml⁻¹ in each case. In contrast both E series prostaglandins exhibited significantly greater (400-700%) anti-aggregatory activity when tested in whole blood than when tested in PRP. Since whole blood presumably represents a truer reflection of platelet reactivity in-vivo, we believe that the potency of 6-oxo-PGE₁ (and PGE₁) as inhibitors of platelet aggregation has been underestimated in previous experiments using PRP. In human whole blood 6-oxo-PGE₁ has approximately 40% the anti-aggregatory potency of E series prostaglandins in whole blood is not known. We suggest that 6-oxo-PGE₁ and PGE₁ (but not PGI₂) may prevent the release of pro-aggregatory ADP from red blood cells thereby enhancing their ability to inhibit platelet aggrega-

6-Oxo-prostaglandin E_1 (6-oxo-PGE₁) is a metabolite of prostacyclin (PGI₂) formed by the enzyme 9-hydroxyprostaglandin dehydrogenase (9-PGDH). In recent years, the potent biological activity of 6-oxo-PGE₁ in different test systems has been unequivocably established (see Moore & Griffiths 1983 for review). 6-Oxo-PGE₁ mimics PGI₂ (but has greater potency) as a renin and erythropoietin secretagogue (Jackson et al 1981; Nelson et al 1983), bronchodilator (Spannhake et al 1981), spasmogen on gut smooth muscle (Griffiths et al 1982), inhibitor of noradrenaline release from electrically stimulated sympathetic nerve terminals (Griffiths & Moore 1983) as a fibrinolytic agent (Korbut et al 1983). For this reason, 6-oxo-PGE₁ which, unlike PGI₂, is chemically stable at body temperature and pH, may be of potential clinical use in the treatment of conditions like asthma and as a thrombolytic drug. Although 6-oxo-PGE₁ also inhibits human platelet aggregation in-vitro, reports of its potency relative to PGI₂ have varied widely. Originally it was reported to be equipotent with PGI₂ (Wong et al 1979). later research revealed that PGI_2 was either $3 \times (Schwertschlag et al)$ 1982), $18 \times$ (Griffiths et al 1982) or even $20 \times$ (Miller et al 1980) more potent than 6-oxo-PGE₁. However, in each of these publications anti-aggregatory activity was assessed in centrifuged blood devoid of erythrocytes and leucocytes which, by releasing agents like ADP.

* Correspondence.

adenosine and even PGI_2 itself, may influence in-vitro platelet reactivity. Clearly, experiments of this type are not representative of the physiological situation in-vivo. For this reason we have now re-examined the ability of PGI_2 , 6-oxo- PGE_1 and PGE_1 to prevent platelet aggregation in a more physiological environment using whole blood and measuring platelet aggregation by the technique of electronic impedence aggregometry.

Methods

Blood (18 ml) was collected by clean venepuncture from adult, male volunteers and anti-coagulated with 2 ml trisodium citrate (2.0% w/v) containing 2 U ml^{-1} heparin. Platelet aggregation was measured in 1 ml aliquots of blood using a Chronolog impedence aggregometer, model 540VS (Coulter Electronics Ltd). For these experiments, blood was warmed to 37 °C and stirred by means of a Teflon stir bar rotating at 1000 rev min⁻¹. Platelet aggregation was induced with ADP at a concentration $(5-10 \,\mu\text{M})$ just sufficient to produce an irreversible platelet aggregation. The extent of platelet aggregation was measured after 8 min. Dilute concentrations of 6-oxo-PGE1 and PGE1 were prepared on the day of use in 50 mm Tris-HCl buffer (pH 7.4) from ethanol master stocks (1 mg ml⁻¹) maintained at -20 °C. In contrast, PGI₂ which was stored (1 mg ml⁻¹) in 0·1 м NaOH (pH 12) at -20 °C was diluted in 50 mм Tris HCl buffer (pH 8.4) before use. All prostaglandins were kept on ice until added in volumes less than 10 µl to the cuvette 1 min before the injection of ADP. Tris-HCl buffer (pH 7.4 and 8.4) did not affect the whole blood platelet aggregation response to ADP when added to the cuvette in volumes up to 20 µl.

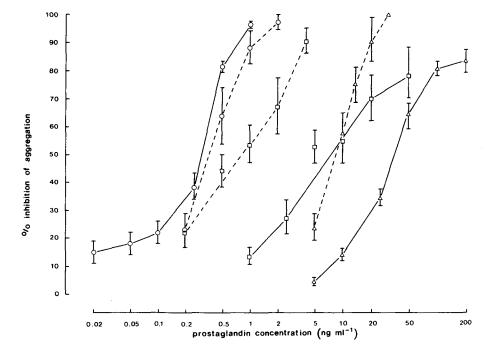
In some experiments, the anti-aggregatory activity of PGI₂, 6-oxo-PGE₁ and PGE₁ was also determined in human platelet rich plasma (PRP). For this purpose, blood was collected, anti-coagulated (1:9 v/v) with trisodium citrate $(3\cdot8\% w/v)$ and centrifuged at 200g in an MSE bench top centrifuge (room temperature (20 °C), 10 min). The resulting PRP was removed and a small aliquot $(0\cdot2 \text{ ml})$ recentrifuged (1000 g, 10 min) to prepare platelet poor plasma (PPP). Platelet aggregation to ADP (5-10 µM) was assessed turbidometrically in $0\cdot1 \text{ ml}$ samples PRP using a Payton dual channel aggregometer $(37 \text{ °C}, 1100 \text{ rev min}^{-1})$ as described elsewhere (Moore 1979) Tris-HCl buffer volumes (<5 µl) did not affect ADP induced platelet aggregation in human PRP.

140

Results

All prostaglandins tested inhibited ADP-induced aggregation of human platelets suspended either in plasma or in whole blood. In each case the rank order of potency was $PGI_2 > 6$ -oxo- $PGE_1 > PGE_1$. However, the absolute anti-aggregatory potency of the three prostaglandins did vary between PRP and whole blood as shown in Fig. 1. The concentrations of prostaglandins required for half maximal inhibition of ADP-induced platelet aggregation (EC50) in human PRP (whole blood in parentheses) were as follows: PGI_2 , 0·30 ng ml⁻¹ (0·38 ng ml⁻¹), 6-oxo-PGE₁ 6·50 ng ml⁻¹

 $(0.85 \text{ ng ml}^{-1})$ and PGE₁ 36.0 ng ml^{-1} $(8.50 \text{ ng ml}^{-1})$


Discussion

respectively.

Although the effect of PGI_2 and PGE_1 on platelet aggregation in both blood and PRP has been well documented, there have been no published reports of the effect of the prostacyclin metabolite, 6-oxo-PGE₁, on platelet reactivity in intact, uncentrifuged blood. Of the three prostaglandins tested, PGI_2 not surprisingly, was found to be the most powerful inhibitor of ADP-induced human platelet aggregation. The log dose-effect curves for PGI₂, assessed using blood and PRP, were parallel and, measured in terms of its EC50 value, PGI_2 had similar potency in both media. Com-

pared with 6-oxo-PGE1 and PGE1, PGI2 was some 21 and 120 times more potent an inhibitor of ADP-induced human platelet aggregation determined in PRP. These potency ratios are in good agreement with previous reports from this and other laboratories (Griffiths et al 1983; Miller et al 1980). However, a novel finding of the present study is that prostaglandins of the E series (but not PGI₂) are more potent inhibitors of platelet aggregation in blood than they are in PRP. When heparinized and citrated blood were used, PGI₂ was only 2.2 and 22 times more potent than 6-oxo-PGE1 and PGE₁ respectively. The reasons why 6-oxo-PGE₁ and PGE₁ have greater anti-aggregatory potency in blood than PRP are not clear. It seems reasonable to assume that E-type prostaglandins exert an additional antiplatelet action in whole blood which does not occur in PRP, and which is not shared by PGI₂. In this context, it may be of relevance that prostaglandins of the E series reduce haemolysis of human red blood cells exposed to hypertonic saline solution by 'stabilizing' the erythrocyte membrane (Kury et al 1974). Thus, we propose that PGE_1 and 6-oxo-PGE₁ (but not PGI_2) prevent the efflux of pro-aggregatory ADP from erythrocytes thereby augmenting their anti-aggregatory effect in whole

Whatever the precise mechanism of action of 6-oxo- PGE_1 , these results may have consequences for the role of this prostaglandin in the control of platelet function

blood.

FIG. 1. Inhibition of ADP-induced human platelet aggregation by PGI₂ ($\bigcirc - \bigcirc$). 6-oxo-PGE₁ ($\square - \square$) and PGE₁ ($\triangle - \triangle$) determined in whole, uncentrifuged blood (broken lines) and PRP (continuous lines). Results show mean ± s.e.m., n = 6-16.

in-vivo. Until now, most researchers have assumed that the concentration of 6-oxo-PGE₁ in plasma required to exert a threshold platelet anti-aggregatory effect in man is ca 1 ng ml⁻¹. This is based on experiments in which the anti-aggregatory potency of this prostaglandin was assessed in PRP prepared from man and animals. In the light of the present results, it is clear that much lower concentrations of 6-oxo-PGE₁ prevent platelet aggregation in human blood, a medium that must be considered a better indication of platelet function in-vivo than experiments using PRP. In our hands, even concentrations of 6-oxo-PGE₁ as low as 200 pg ml⁻¹ significantly inhibited (by 17-28%) ADP-induced human platelet aggregation.

Even though 6-oxo-PGE₁ prevents platelet aggregation in human blood at subnanogram concentrations, it is unlikely that this prostaglandin exerts a significant effect on platelet function in healthy subjects in-vivo since human plasma contains less than 30 pg ml⁻¹ 6-oxo-PGE₁ (Jackson et al 1982). However, we should not ignore the possibility that higher concentrations of this prostaglandin (perhaps sufficient to prevent platelet aggregation) do occur locally in the vicinity of a platelet plug formed from PGI_2 and/or 6-oxo-PGF_{1 α} by platelet cytoplasmic 9-PGDH. Furthermore, elevated plasma 6-oxo-PGE1 has been observed in patients with Barrter's syndrome and may be responsible for the defect in platelet aggregation and increased bleeding time which characterizes this condition. We suggest that the results of the present study be borne in mind when interpreting

the relevance of plasma 6-oxo-PGE₁ levels in healthy human volunteers and in patients with clinical disease.

We would like to thank the MRC for financial support.

REFERENCES

- Griffiths, R. J., Lofts, F. J., Moore, P. K. (1982) Br. J. Pharmacol. 77: 491P
- Griffiths, R. J., Moore, P. K. (1983) J. Pharm. Pharmacol. 35: 184–186
- Jackson, E. K., Merzer, W. A., Zimmerman, J. B., Branch, R. A., Oates, J. A., Gerkens, J. F. (1981) J. Pharmacol. Exp. Ther. 216: 24–27
- Jackson, E. K., Goodwin, R. P., Fitzgerald, G. A., Oates, J. A., Branch, R. A. (1982) Ibid. 221: 183–187
- Korbut, R., Byrska-Danek, A., Gryglewski, R. J. (1983) Thromb. Haemostas. 50: 893
- Kury, P. G., Ramwell, P. W., McConnell, H. M. (1974) Biochem. Biophys. Res. Commun. 56: 478–483
- Miller, O. V., Aiken, J. W., Shebuski, R. J., Gorman, R. R. (1980) Prostaglandins 20: 391-400
- Moore, P. K. (1979) Thromb. Haemostas. 47: 76
- Moore, P. K., Griffiths, R. J. (1983) Prostaglandins 26: 509–517
- Nelson, P. K., Brookins, J., Fisher, J. W. (1983) J. Pharmacol. Exp. Ther. 226: 493–499
- Schwertschlag, U., Stahl, T., Hackenthal, E. (1982) Prostaglandins 23: 129–138
- Spannhake, E. W., Levin, G. L., Hyman, A. L., Kadowitz, P. J. (1981) Prostaglandins 21: 266–275
- Wong, P. Y.-K., McGiff, J. C., Sun, F. F., Lee, W. H. (1979) Eur. J. Pharmacol. 60: 245–248

J. Pharm. Pharmacol. 1985, 37: 141–142 Communicated June 11, 1984 © 1985 J. Pharm. Pharmacol.

Cocaine-like action of diphenhydramine in cat cerebral arteries

GLORIA BALFAGÓN, EMILIO J. MARCO^{*}, Departamento de Fisiología, Facultad de Medicina. Universidad Autónoma de Madrid, Arzobispo Morcillo 1, Madrid 34, Spain

Diphenhydramine $(5.3 \times 10^{-7} \text{ M})$ significantly reduced the tritium efflux evoked by 10^{-7} M tyramine from cat cerebral arteries preloaded with [³H]noradrenaline but not that brought about by 50 mM KCl. These results indicate the ability of diphenhydramine to block the amine neuronal uptake.

Histamine has the property of releasing noradrenaline from sympathetic nerve endings present in the walls of cat and human cerebral arteries (Marco et al 1980; Balfagón et al 1984; Marco et al 1984). Most of the available data suggest that it achieves this effect by means of an exocytotic process after entering the nerve terminals through the amine uptake system (Balfagón et al 1984). This action of histamine shows a strong dependence on external calcium and appears inhibited in the presence of cocaine or colchicine. Nevertheless.

* Correspondence.

such a conclusion seems to be obscured by the fact that diphenhydramine also blocks the tritium release induced by histamine from cat cerebral arteries preloaded with [³H]noradrenaline, which would indicate the possible activation of a presynaptic receptor by this amine (Marco et al 1980). In the present communication we try to elucidate the way in which diphenhydramine is able to interfere with the release of noradrenaline evoked by histamine in this kind of vessel.

Methods

Cats of either sex, 1.5-4 kg, were anaesthetized with sodium pentobarbitone (35 mg kg⁻¹ i.p.) and killed by bleeding. The brain was removed and the circle of Willis with its branches was dissected out. The vessels were cleaned to remove traces of blood and surrounding tissue and incubated for 1 h in Krebs-Henseleit solution